Pressure switch in hydrogen-powered train ensures safety

In a newly developed hydrogen train for local transport, a pressure switch from WIKA plays an essential role. Within the scope of pressure monitoring, it performs the central safety function in the H2 supply system during the journey.
The benefits of hydrogen in rail transport are rather unknown to everyone. Even if the initial trains with H2 fuel cells already are in operation. They are powered by non-electrified railway lines and replace the diesel trains which were used before.
Tanks predicated on carbon fibre composite technology
The tank capacity for the hydrogen must be adapted to the distances. One of WIKA? ไดอะแฟรม ซีล has specialised in individual fuel storage systems for H2 vehicles. Their cylindrical tanks are based on carbon fibre composite technology. They’re therefore extremely robust and yet have a comparatively low weight in comparison to steel vessels.
Tanks of the type may also be installed in the hydrogen-powered train mentioned in the beginning. This multiple-unit train, created for commuting traffic, is filled with the hydrogen at a special terminal. The tank pressure is 300 to 350 bar. While driving, it should be reduced to a single-digit value for the supply to the fuel cell. This is done via a pressure regulation unit downstream of the storage system.
Pressure switch in hydrogen-powered train switches the drive system off
Suitable for use in a new kind of hydrogen-powered train with regard to safety ? the model PXA pressure switch from WIKA.
The pressure switch model PXA meets the requirements of the hydrogen-powered train application. With the monitoring the of tank pressure and pressure regulation in the hydrogen-powered train, the customer uses the pressure switch model PXA for the safety function. The miniature instrument switches off the H2 propulsion system in two cases, depending on function:
if the tank is in danger of emptying
if the pressure becomes too much when the hydrogen is used in the propulsion system
Such an emergency protection could also be realised with a pressure sensor and a software. But also for trains this solution would be very complicated. Additionally it is rated with an increased risk of error than a switch-based safety function.
SIL-3 approval made the case for its use
The customer did not decide on the model PXA due to the measurement quality alone. The pressure switch was also considered right for the task in the hydrogen-powered train due to its SIL-3 suitability. It thus easily meets the safety-related market requirements for the H2 application (SIL-2).
Flameproof enclosure (?Ex d?) and pressure gauge octa in addition has been created for ambient temperatures from -40 �C to +85 �C. In addition, the pressure switch has IECEx approval ?Ex d? (flameproof enclosure), that your customer requires as standard. An additional benefit of this instrument: The PXA could possibly be easily integrated into the storage system because of its extremely compact design.
Note
Further information on the subject of hydrogen and on the pressure switch model PXA can be found on the WIKA website. When you have any questions, your contact will gladly gelp you.
Also read our posts
Wika develops pressure sensor for hydrogen-powered vehicles
Hydrogen mobility: Clean engines into the future offer the same convenience as engines today
Turning hydrogen into kilometres
Hydrogen and pressure sensors ? What must be observed?

Scroll to Top